@doctorix
Euuuh, encore un mythomane du QI ? Pour Terence Tao, il est cité sur des listes fantaisistes, où on trouve notamment Kasparov à 180 ou 170. Je cite Kasparov parce que justement, il a réellement été testé dans les années 80, et son QI est de 135. Si tu crois vraiment que je vais accorder du crédit à des listes mentionnant le QI de Blaise Pascal, de Newton, Mozart ou Leibniz (je pense que pour ceux là, ton QI de 145 comprendra où se situe le LEGER PROBLEME), passe ton chemin.
En gros, tu aurais un plus gros QI qu’un des 5 meilleurs joueurs d’échecs de l’histoire, champion du monde de 1985 à 2000 sans interruption, ou un géant de la Physique comme Richard Feynman. La belle affaire (même si c’était vrai), parce que je lis souvent AV sans y intervenir et que je te concède volontiers que tes coms de paranoïaque farcis de théories délirantes se distinguent de la masse du troupeau, mais pas pour de bonnes raisons.
Tiens d’ailleurs, voici certaines idées de Terence Tao liées au sujet, et qui ne vont pas dans ton sens (tu devrais éviter de citer un nom à tort et à travers en tant qu’autorité (surtout quand c’est carrément le contraire du but recherché (on dirait le regretté Morice)), ce n’est pas digne de ton QI himalayen). Les mises en gras sont de votre serviteur.
It appears my previous comment may have have been interpreted in a manner differently from what I intended, which was as a statement of (lack of) empirical correlation rather than (lack of) causation. More precisely, the point I was trying to make with the above quote is this : if one considers a population of promising young mathematicians (e.g. an incoming PhD class at an elite mathematics department), they will almost all certainly have some reasonable level of intelligence, and some subset will have particularly exceptional levels of intelligence. A significant fraction of both groups will go on to become professional mathematicians of some decent level of accomplishment, with the fraction likely to (but not necessarily) be a bit higher when restricted to the group with exceptional intelligence. But if one were to try to use “exceptional levels of intelligence” as a predictor as to which members of the population will go on to become exceptionally successful and productive mathematicians, I believe this to be an extremely poor predictor, with the empirical correlation being low or even negative (cf. Berkson’s paradox).
Now, at the level of theoretical causation rather than empirical correlation, I would concede that if one were to take a given mathematician and somehow increase his or her level of intelligence to extraordinary levels, while keeping all other traits (e.g. maturity, work ethic, study habits, persistence, level of rigor and organisation, breadth and retention of knowledge, social skills, etc.) unchanged, then this would likely have a positive effect on his or her ability to be an extraordinarily productive mathematician. However, empirically one finds that mathematicians who did not exhibit precocious levels of intelligence in their youth are likely to be stronger in other areas which will often turn out to be more decisive in the long-term, at least when one restricts to populations that have already reached some level of mathematical achievement (e.g. admission to a top maths PhD program).
For instance, many difficult problems in mathematics require a slow, patient approach in which one methodically digests all the existing techniques in the literature and applies various combinations of them in turn to the problem, until one can isolate the key obstruction that needs to be overcome and the key new insight which, in conjunction with an appropriate combination of existing methods, will resolve the problem. A mathematician who is used to using his or her high levels of intelligence to quickly find original solutions to problems may not have the patience and stamina for such a systematic approach, and may instead inefficiently expend a lot of energy on coming up with creative but inappropriate approaches to the problem, without the benefit of being guided by the accumulated conventional wisdom gained from fully understanding prior approaches to the problem. Of course, the converse situation can also occur, in which an unusually intelligent mathematician comes up with a viable approach missed by all the more methodical people working on the problem, but in my experience this scenario is rarer than is sometimes assumed by outside observers, though it certainly can make for a more interesting story to tell.
02/08 09:53 - Legestr glaz
02/08 09:20 - doctorix
Ici, on voit comment Face de Bouc controle et modère les Pro Trump d’une façon (...)
02/08 09:03 - doctorix
@myrrhe-lit-on Maintenant, c’est wikipedia, qui est une émanation de deep state. Ce qui (...)
02/08 00:33 - doctorix
Voici une liste de mille arrestations aux USA pour traffic d’êtres humains, dont (...)
02/08 00:13 - doctorix
Mon article : COVID 19 : ça tourne à la farce macabre est à +20 -16. Bientôt +104 — (...)
02/08 00:07 - Aita Pea Pea
@The White Rabbit Bahhh ...le meilleur coup qu’ai raté James .
Agoravox utilise les technologies du logiciel libre : SPIP, Apache, Ubuntu, PHP, MySQL, CKEditor.
Site hébergé par la Fondation Agoravox
A propos / Contact / Mentions légales / Cookies et données personnelles / Charte de modération